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Worked Example 1

Simply Supported, Single Point Loaded Beam

The beam shown below is the example simply supported, centrally point loaded beam used in the description of
Macaulay’s method in section 3 of the notes.
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Problem

Use Macaulay’s method to determine expressions for the slope and deflection at the position of the point load.



Drawing a free body diagram of the beam:

DU L/2

Determination of Reaction Forces

Vertical equilibrium: P =R, + R (12)

Taking moments about the position of Ry:
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Substituting this into equation (12): P =Ry + =
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Determination of Expression for Bending Moment

Taking the left-hand end of the beam as the origin, sectioning after the final discontinuity and drawing a free body
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diagram:

Taking moments about the section position in order to determine an expression for the bending moment, M:
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Determination of 2"d order differential expression for the shape of the beam

Substituting this into the 2nd order differential equation of the elastic line:
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Integrating to Obtain Expressions for Slope and Deflection

Integrating with respect to x:
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Integrating with respect to x again:
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Use of Boundary Conditions to Solve for Constants of Integration

As the beam is simply supported at each end, the boundary conditions are:
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BCl:atx=0,y=0 applying this into equation (15): EIX0 = 6 6 + AX0+ B
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BC2:atx=L,y=0 applying this into equation (15): EIX0 = 6 e + AL+ 0
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Evaluation of Slope and Deflection at x = 5

Applying x = ginto equations (14) and (15) gives:
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Substituting the expressions for R, and A into these, and rearranging for d—i’ and y, gives:
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